Jundishapur Journal of Health Sciences

Published by: Kowsar
Crossmark

Modeling of Ammonia Emission in the Petrochemical Industry

Hossein Abbaslou ORCID 1 and Ali Karimi ORCID 1 , *
Authors Information
1 Department of Occupational Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
Article information
  • Jundishapur Journal of Health Sciences: July 31, 2019, 11 (3); e94101
  • Published Online: August 3, 2019
  • Article Type: Research Article
  • Received: May 19, 2019
  • Revised: July 15, 2019
  • Accepted: July 20, 2019
  • DOI: 10.5812/jjhs.94101

How to Cite: Abbaslou H, Karimi A. Modeling of Ammonia Emission in the Petrochemical Industry, Jundishapur J Health Sci. 2019 ; 11(3):e94101. doi: 10.5812/jjhs.94101.

Abstract
Copyright © 2019, Jundishapur Journal of Health Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Methods
4. Results
5. Discussion
Acknowledgements
Footnotes
References
  • 1. Lees F. Lees' loss prevention in the process industries: Hazard identification, assessment and control. Oxford: Butterworth-Heinemann; 2012.
  • 2. Jafari MJ, Nourai F, Pouyakian M, Torabi SA, Rafiee Miandashti M, Mohammadi H. Barriers to adopting inherently safer design philosophy in Iran. Process Saf Prog. 2018;37(2):221-9. doi: 10.1002/prs.11927.
  • 3. Eljack F, Kazi MK. Process safety and abnormal situation management. Curr Opin Chem Eng. 2016;14:35-41. doi: 10.1016/j.coche.2016.07.004.
  • 4. Chang JI, Lin CC. A study of storage tank accidents. J Loss Prev Process Ind. 2006;19(1):51-9. doi: 10.1016/j.jlp.2005.05.015.
  • 5. Rajkumar S. Safety security and risk management - aftermath bhopal disaster. Int J Biosen Bioelectron. 2017;2(6):180-3. doi: 10.15406/ijbsbe.2017.02.00044.
  • 6. Neghab M, Mirzaei A, Kargar Shouroki F, Jahangiri M, Zare M, Yousefinejad S. Ventilatory disorders associated with occupational inhalation exposure to nitrogen trihydride (ammonia). Ind Health. 2018;56(5):427-35. doi: 10.2486/indhealth.2018-0014. [PubMed: 29887542]. [PubMed Central: PMC6172184].
  • 7. Shao H, Duan G. Risk quantitative calculation and ALOHA simulation on the leakage accident of natural gas power plant. Procedia Eng. 2012;45:352-9. doi: 10.1016/j.proeng.2012.08.170.
  • 8. Atabi F, Ghorbani R, Jabbari M. [Assessment of safe distance for five toxic materials commonly in the accidents of chemical road transportation using ALOHA and PHAST software and CEI index (case study: Tehran-Qazvin highway)]. Iran Occup Health J. 2017;14(4):42-35. Persian.
  • 9. Beheshti MH, Hajizadeh R, Mehri A, Jebeli MB. [Modeling the result of hexane leakage from storage tanks and planning an emergency response program in a petrochemical complex]. Iran Occup Health. 2016;13(69-79). Persian.
  • 10. Tseng JM, Su TS, Kuo CY. Consequence evaluation of toxic chemical releases by ALOHA. Procedia Eng. 2012;45:384-9. doi: 10.1016/j.proeng.2012.08.175.
  • 11. Bhattacharya R, Kumar G. Consequence analysis for simulation of hazardous chemicals release using ALOHA software. Int J ChemTech Res. 2015;8(4):2038-46.
  • 12. Poluyan LV, Syutkina EV, Guryev ES. Software systems for prediction and immediate assessment of emergency situations on municipalities territories. IOP Conf Ser Mater Sci Eng. 2017;262:12199. doi: 10.1088/1757-899x/262/1/012199.
  • 13. Timashev SA, Alekhin VN, Poluyan LV, Guryev ES. Innovative masters program "safety of civil engineering critical infrastructures and territories". IOP Conf Ser Mater Sci Eng. 2015:1166-70. doi: 10.1109/icl.2015.7318199.
  • 14. Lee HE, Sohn JR, Byeon SH, Yoon SJ, Moon KW. Alternative risk assessment for dangerous chemicals in south korea regulation: Comparing three modeling programs. Int J Environ Res Public Health. 2018;15(8). doi: 10.3390/ijerph15081600. [PubMed: 30060550]. [PubMed Central: PMC6121683].
  • 15. Kamali J, Mohammadi H. Modeling and analysis of the consequences of Kermanshah Petrochemical ammonia tank with using phast7.11 software. 6th National Conference on Safety Engineering & HSE Management. 2016.
  • 16. Wang W, Xu Y, Zhang J. Research of ammonia concentration distribution simulation in road transportation leakage based on the Gaussian model. 1st International Conference on Transportation Infrastructure and Materials. 2016.
  • 17. Lim H, Kwak S, Jung J, Ryu T, Choi W, Lee J, et al. A study on the factors affecting the influence ranges of ammonia leakage by using KORA program. J Korean Inst Gas. 2018;22(3):38-44. Korean.
  • 18. Anjana NS, Amarnath A, Harindranathan Nair MV. Toxic hazards of ammonia release and population vulnerability assessment using geographical information system. J Environ Manage. 2018;210:201-9. doi: 10.1016/j.jenvman.2018.01.021. [PubMed: 29353114].
  • 19. Yilang H, Xiaoli Y, Chao H. Analysis of liquid ammonia leakage accidents based on safety system engineering theory. Int J Bus Soc Sci. 2014;5(1):220-6.
  • 20. Iran Meteorological Organization. Historical and climate data. Tehran: Iran Meteorological Organization; 2019. Available from: http://irimo.ir/far/web_directory/2703.html.
  • 21. Nance P, Patterson J, Willis A, Foronda N, Dourson M. Human health risks from mercury exposure from broken compact fluorescent lamps (CFLs). Regul Toxicol Pharmacol. 2012;62(3):542-52. doi: 10.1016/j.yrtph.2011.11.008. [PubMed: 22142629].
  • 22. Jafari MJ, Zarei E, Dormohammadi A. [Presentation of a method for consequence modeling and quantitative risk assessment of fire and explosion in process industry (case study: Hydrogen production process)]. J Journal of Health and Safety at Work. 2013;3(1):55-68. Persian.
  • 23. Orozco JL, Van Caneghem J, Hens L, González L, Lugo R, Díaz S, et al. Assessment of an ammonia incident in the industrial area of Matanzas. J Clean Prod. 2019;222:934-41. doi: 10.1016/j.jclepro.2019.03.024.
  • 24. Shirali GA, Mosavian Asl Z, Jahani F, Siahi Ahangar A, Etemad S. [Modeling the effect of ammonia leakage from ammonia reservoirs using ALOHA software and developing an emergency response program in one of process industries]. J Occup Hyg Eng. 2018;5(2):12-9. Persian. doi: 10.21859/johe.5.2.12.
  • 25. Gangopadhyay RK, Das SK. Ammonia leakage from refrigeration plant and the management practice. Process Saf Prog. 2008;27(1):15-20. doi: 10.1002/prs.10208.
  • 26. Horng JJ, Lin YS, Shu CM, Tsai E. Using consequence analysis on some chlorine operation hazards and their possible effects on neighborhoods in central Taiwan. J Loss Prevent Proc. 2005;18(4-6):474-80. doi: 10.1016/j.jlp.2005.07.024.
  • 27. Xibo D, Ru-Yue W. Development of ammonia gas leak detection and location method. J TELKOMNIKA. 2017;15(3):1207-14. doi: 10.12928/telkomnika.v15i3.5079.
  • 28. Pourbabaki R, Karimi A, Yazdanirad S. [Modeling the consequences and analyzing the dangers of carbon disulfide emissions using ALOHA software in an oil refinery]. J Health Field. 2019;6(3):1-9. Persian.

Featured Image:

Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .
Readers' Comments