Jundishapur Journal of Health Sciences

Published by: Kowsar

Comparison of Statistical Methods, Neural Network, and Fuzzy Neural for Particular Matter Prediction: A Case Study in Mashhad, Iran

Elham Asrari ORCID 1 , * and Maryam Paydar 1
Authors Information
1 Department of Civil Engineering, Payame Noor University, Tehran, Iran
Article information
  • Jundishapur Journal of Health Sciences: July 31, 2019, 11 (3); e87978
  • Published Online: May 22, 2019
  • Article Type: Research Article
  • Received: December 19, 2018
  • Revised: April 30, 2019
  • Accepted: May 5, 2019
  • DOI: 10.5812/jjhs.87978

To Cite: Asrari E, Paydar M. Comparison of Statistical Methods, Neural Network, and Fuzzy Neural for Particular Matter Prediction: A Case Study in Mashhad, Iran, Jundishapur J Health Sci. 2019 ; 11(3):e87978. doi: 10.5812/jjhs.87978.

Copyright © 2019, Jundishapur Journal of Health Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Methods
4. Results
5. Discussion
  • 1. Miri M, Derakhshan Z, Allahabadi A, Ahmadi E, Oliveri Conti G, Ferrante M, et al. Mortality and morbidity due to exposure to outdoor air pollution in Mashhad metropolis, Iran. The AirQ model approach. Environ Res. 2016;151:451-7. doi: 10.1016/j.envres.2016.07.039. [PubMed: 27565880].
  • 2. Colls J. Air pollution. London: Spon Press; 2002. doi: 10.4324/9780203476024.
  • 3. Dockery DW. Epidemiologic evidence of cardiovascular effects of particulate air pollution. Environ Health Perspect. 2001;109 Suppl 4:483-6. doi: 10.1289/ehp.01109s4483. [PubMed: 11544151]. [PubMed Central: PMC1240569].
  • 4. Chen YS, Sheen PC, Chen ER, Liu YK, Wu TN, Yang CY. Effects of Asian dust storm events on daily mortality in Taipei, Taiwan. Environ Res. 2004;95(2):151-5. doi: 10.1016/j.envres.2003.08.008. [PubMed: 15147920].
  • 5. EPAU. Ecological effects test guidelines. Gammarid Acute Toxicity Test OPPTS; 2007.
  • 6. Brunekreef B, Holgate ST. Air pollution and health. The Lancet. 2002;360(9341):1233-42. doi: 10.1016/s0140-6736(02)11274-8.
  • 7. Lira TS, Barrozo MA, Assis AJ. Air quality prediction in Uberlândia, Brazil, using linear models and neural networks. Comput Aided Chem Eng. 2007;24:51-6. doi: 10.1016/s1570-7946(07)80032-0.
  • 8. Razi M, Athappilly K. A comparative predictive analysis of neural networks (NNs), nonlinear regression and classification and regression tree (CART) models. Expert System Application. 2005;29(1):65-74. doi: 10.1016/j.eswa.2005.01.006.
  • 9. Murat YS, Ceylan H. Use of artificial neural networks for transport energy demand modeling. Energ Policy. 2006;34(17):3165-72. doi: 10.1016/j.enpol.2005.02.010.
  • 10. Hájek P, Olej V. Ozone prediction on the basis of neural networks, support vector regression and methods with uncertainty. Ecol Inform. 2012;12:31-42. doi: 10.1016/j.ecoinf.2012.09.001.
  • 11. Mao X, Shen T, Feng X. Prediction of hourly ground-level PM 2.5 concentrations 3 days in advance using neural networks with satellite data in eastern China. Atmos Pollut Res. 2017;8(6):1005-15. doi: 10.1016/j.apr.2017.04.002.
  • 12. Olvera-García MÁ, Carbajal-Hernández JJ, Sánchez-Fernández LP, Hernández-Bautista I. Air quality assessment using a weighted Fuzzy Inference System. Ecol Inform. 2016;33:57-74. doi: 10.1016/j.ecoinf.2016.04.005.
  • 13. Salehi H, Zeinali-Heris S, Esfandyari M, Koolivand M. Nero-fuzzy modeling of the convection heat transfer coefficient for the nanofluid. Heat Mass Transfer. 2012;49(4):575-83. doi: 10.1007/s00231-012-1104-9.
  • 14. Menhaj M. Basics of neural networks [dissertation]. Tehran: Amir Kabir University of Technology; 2005.
  • 15. Taghavi H. Temporal distribution and spatial distribution of air pollution index contamination and effective factors on ander Mashhad [dissertation]. Iran: Ferdowsi University of Mashhad; 2012.
  • 16. Comrie AC, Diem JE. Climatology and forecast modeling of ambient carbon monoxide in Phoenix, Arizona. Atmos Env. 1999;33(30):5023-36. doi: 10.1016/s1352-2310(99)00314-3.
  • 17. Yildirim Y, Bayramoglu M. Adaptive neuro-fuzzy based modelling for prediction of air pollution daily levels in city of Zonguldak. Chemosphere. 2006;63(9):1575-82. doi: 10.1016/j.chemosphere.2005.08.070. [PubMed: 16310825].
  • 18. Aliari Shorehdel M, Teshnehlab M, Khaki Sedigh A. Short term prediction of air pollution using MLP, GAMMA, ANFIS, and mixed training methods based on PSO. J Control. 2008;2(1):1-19.

Featured Image:

Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .
Readers' Comments