Jundishapur Journal of Health Sciences

Published by: Kowsar

Applying Tire Rubber Ash Enriched Cow Manure as a Useful Way to Decrease Canola Cd Uptake in a Polluted Soil

Amir Hossein Baghaie 1 , * , Forough Aghili 2 and Ali Hassani Joshaghani 3
Authors Information
1 Department of Soil Science, Arak Branch, Islamic Azad University, Arak, Iran
2 Young Researchers and Elite Club, Arak Branch, Islamic Azad University, Arak, Iran
3 Department of Chemical Engineering, Arak Branch, Islamic Azad University, Arak, Iran
Article information
  • Jundishapur Journal of Health Sciences: October 31, 2018, 10 (4); e82610
  • Published Online: December 16, 2018
  • Article Type: Research Article
  • Received: July 25, 2018
  • Revised: September 12, 2018
  • Accepted: October 27, 2018
  • DOI: 10.5812/jjhs.82610

To Cite: Baghaie A H, Aghili F, Hassani Joshaghani A. Applying Tire Rubber Ash Enriched Cow Manure as a Useful Way to Decrease Canola Cd Uptake in a Polluted Soil, Jundishapur J Health Sci. 2018 ; 10(4):e82610. doi: 10.5812/jjhs.82610.

Abstract
Copyright © 2018, Jundishapur Journal of Health Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Methods
4. Results
5. Discussion
Acknowledgements
Footnotes
References
  • 1. Zhu G, Xiao H, Guo Q, Zhang Z, Zhao J, Yang D. Effects of cadmium stress on growth and amino acid metabolism in two compositae plants. Ecotoxicol Environ Saf. 2018;158:300-8. doi: 10.1016/j.ecoenv.2018.04.045. [PubMed: 29727812].
  • 2. Jiang S, Weng B, Liu T, Su Y, Liu J, Lu H, et al. Response of phenolic metabolism to cadmium and phenanthrene and its influence on pollutant translocations in the mangrove plant Aegiceras corniculatum (L.) Blanco (Ac). Ecotoxicol Environ Saf. 2017;141:290-7. doi: 10.1016/j.ecoenv.2017.03.041. [PubMed: 28363172].
  • 3. Liu X, Zhong L, Meng J, Wang F, Zhang J, Zhi Y, et al. A multi-medium chain modeling approach to estimate the cumulative effects of cadmium pollution on human health. Environ Pollut. 2018;239:308-17. doi: 10.1016/j.envpol.2018.04.033. [PubMed: 29665551].
  • 4. Wiangkham N, Prapagdee B. Potential of Napier grass with cadmium-resistant bacterial inoculation on cadmium phytoremediation and its possibility to use as biomass fuel. Chemosphere. 2018;201:511-8. doi: 10.1016/j.chemosphere.2018.03.039. [PubMed: 29529578].
  • 5. Shen Z, Hou D, Zhao B, Xu W, Ok YS, Bolan NS, et al. Stability of heavy metals in soil washing residue with and without biochar addition under accelerated ageing. Sci Total Environ. 2018;619-620:185-93. doi: 10.1016/j.scitotenv.2017.11.038. [PubMed: 29149742].
  • 6. Khan MA, Khan S, Khan A, Alam M. Soil contamination with cadmium, consequences and remediation using organic amendments. Sci Total Environ. 2017;601-602:1591-605. doi: 10.1016/j.scitotenv.2017.06.030. [PubMed: 28609847].
  • 7. Driessnack MK, Jamwal A, Niyogi S. Effects of chronic waterborne cadmium and zinc interactions on tissue-specific metal accumulation and reproduction in fathead minnow (Pimephales promelas). Ecotoxicol Environ Saf. 2017;140:65-75. doi: 10.1016/j.ecoenv.2017.02.023. [PubMed: 28235657].
  • 8. Cheng Y, Wang C, Chai S, Shuai W, Sha L, Zhang H, et al. Ammonium N influences the uptakes, translocations, subcellular distributions and chemical forms of Cd and Zn to mediate the Cd/Zn interactions in dwarf polish wheat (Triticum polonicum L.) seedlings. Chemosphere. 2018;193:1164-71. doi: 10.1016/j.chemosphere.2017.11.058. [PubMed: 29874745].
  • 9. De Oliveira VH, Tibbett M. Tolerance, toxicity and transport of Cd and Zn in Populus trichocarpa. Environ Experiment Botany. 2018;155:281-92. doi: 10.1016/j.envexpbot.2018.07.011.
  • 10. Jiao Y, Chen J, Li W, Liu Y, Xin C, Yang L. Trace elements concentrations in squids consumed in Shandong Province China and their associated risks to the human health. Mar Pollut Bull. 2018;128:267-74. doi: 10.1016/j.marpolbul.2018.01.038. [PubMed: 29571373].
  • 11. Dapkekar A, Deshpande P, Oak MD, Paknikar KM, Rajwade JM. Zinc use efficiency is enhanced in wheat through nanofertilization. Sci Rep. 2018;8(1):6832. doi: 10.1038/s41598-018-25247-5. [PubMed: 29717180]. [PubMed Central: PMC5931615].
  • 12. Kumpiene J, Brannvall E, Wolters M, Skoglund N, Cirba S, Aksamitauskas VC. Phosphorus and cadmium availability in soil fertilized with biosolids and ashes. Chemosphere. 2016;151:124-32. doi: 10.1016/j.chemosphere.2016.02.069. [PubMed: 26933903].
  • 13. Daneshbakhsh B, Khoshgoftarmanesh AH, Shariatmadari H, Cakmak I. Phytosiderophore release by wheat genotypes differing in zinc deficiency tolerance grown with Zn-free nutrient solution as affected by salinity. J Plant Physiol. 2013;170(1):41-6. doi: 10.1016/j.jplph.2012.08.016. [PubMed: 23122914].
  • 14. Rengel Z. Availability of Mn, Zn and Fe in the rhizosphere. J Soil Sci Plant Nutr. 2015;15(2):397-409. doi: 10.4067/S0718-95162015005000036.
  • 15. Ghiasi S, Khoshgoftarmanesh AH, Afyuni M, Chaney RL. Agronomic and economic efficiency of ground tire rubber and rubber ash used as zinc fertilizer sources for wheat. J Plant Nutr. 2016;39(10):1412-20.
  • 16. Taheri S, Khoshgoftarmanesh AH, Shariatmadari H, Chaney RL. Kinetics of zinc release from ground tire rubber and rubber ash in a calcareous soil as alternatives to Zn fertilizers. Plant soil. 2011;341(1-2):89-97. doi: 10.1007/s11104-010-0624-7.
  • 17. Baghaie AH. [Effect of tire rubber ash enriched municipal waste compost on decreasing spinach Cd concentration (a case study: Arak municipal waste compost]. Iran J Health Environ. 2017;10(3):401-10. Persian.
  • 18. Khoshgoftarmanesh AH, SanaeiOstovar A, Sadrarhami A, Chaney R. Effect of tire rubber ash and zinc sulfate on yield and grain zinc and cadmium concentrations of different zinc-deficiency tolerance wheat cultivars under field conditions. Eur J Agron. 2013;49:42-9. doi: 10.1016/j.eja.2013.02.013.
  • 19. Soil Survey Staff S. Keys to soil taxonomy. Twelfth ed. United States Department of Agriculture: Pocahontas Press; 2014.
  • 20. Baghaie AH. [Effect of municipal waste compost and zeolite on reduction of cadmium availability in a loamy soil (A case study: Arak municipal waste compost)]. J Soil Manage and Sustain Product. 2017;6(4):103-17. Persian. doi: 10.22069/EJSMS.2017.10398.1616.
  • 21. Nelson DW, Sommers LE. Total carbon, organic carbon, and organic matter 1. In: Weaver RW, Angle JS, Bottomly PS, editors. Methods of soil analysis. Part 2. Chemical and microbiological properties. 2. American Society of Agronomy, Soil Science Society of America; 1982. p. 539-79.
  • 22. Rhoades JD. Cation exchange capacity. In: Page AL, Miller RH, Keeney DR, editors. Methods of soil analysis. Madison, Wisconsin, USA; 1982. p. 149-57.
  • 23. Lindsay WL, Norvell WA. Development of a DTPA Soil test for Zinc, Iron, Manganese, and Copper 1. Soil Sci Soc America J. 1978;42(3):421-8.
  • 24. Bremner JM. Nitrogen-total. In: Sparks DL, editor. Methods of soil analysis part 3-chemical methods. Soil Science Society of America, American Society of Agronomy; 1996. doi: 10.2136/sssabookser5.3.frontmatter.
  • 25. Aghili F, Gamper HA, Eikenberg J, Khoshgoftarmanesh AH, Afyuni M, Schulin R, et al. Green manure addition to soil increases grain zinc concentration in bread wheat. PLoS One. 2014;9(7). e101487. doi: 10.1371/journal.pone.0101487. [PubMed: 24999738]. [PubMed Central: PMC4084887].
  • 26. Wilkins DA. The measurement of tolerance to edaphic factors by means of root growth. New Phytologist. 1978;80(3):623-33. doi: 10.1111/j.1469-8137.1978.tb01595.x.
  • 27. Qaswar M, Hussain S, Rengel Z. Zinc fertilisation increases grain zinc and reduces grain lead and cadmium concentrations more in zinc-biofortified than standard wheat cultivar. Sci Total Environ. 2017;605-606:454-60. doi: 10.1016/j.scitotenv.2017.06.242. [PubMed: 28672234].
  • 28. Sarwar N, Ishaq W, Farid G, Shaheen MR, Imran M, Geng M, et al. Zinc-cadmium interactions: Impact on wheat physiology and mineral acquisition. Ecotox Environ Safe. 2015;122:528-36. doi: 10.1016/j.ecoenv.2015.09.011.
  • 29. Farahani NT, Baghaie AH. [Interactive effect of Fe and Pb on decreasing corn Pb availability in a Pb-polluted soil]. J Water Soil. 2017;31(4):1187-99. Persian.
  • 30. Chen Q, Lu X, Guo X, Pan Y, Yu B, Tang Z, et al. Differential responses to Cd stress induced by exogenous application of Cu, Zn or Ca in the medicinal plant Catharanthus roseus. Ecotoxicol Environ Saf. 2018;157:266-75. doi: 10.1016/j.ecoenv.2018.03.055. [PubMed: 29626640].
  • 31. De Oliveira VH, Tibbett M. Cd and Zn interactions and toxicity in ectomycorrhizal basidiomycetes in axenic culture. Peer J. 2018;6. e4478. doi: 10.7717/peerj.4478. [PubMed: 29568708]. [PubMed Central: PMC5845391].
  • 32. Kabata-Pendias A. Trace elements in soils and plants. Fourth ed. Boca Raton, London, New York, Washington, D.C: CRC Press; 2010.
  • 33. Kumar A, Bahadur I, Maurya BR, Raghuwanshi R, Meena VS, Singh DK, et al. Does a plant growth-promoting rhizobacteria enhance agricultural sustainability. J Pure Appl Microbiol. 2015;9(1):715-24.
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments