Jundishapur Journal of Health Sciences

Published by: Kowsar

An Artificial Neural Network - Particle Swarm Optimization (ANN- PSO) Approach to Predict Heavy Metals Contamination in Groundwater Resources

Meysam Alizamir 1 , * and Soheil Sobhanardakani 2
Authors Information
1 Young Researchers and Elite Club, Hamedan Branch, Islamic Azad University, Hamedan, IR Iran
2 Department of Environment, Hamedan Branch, Islamic Azad University, Hamedan, IR Iran
Article information
  • Jundishapur Journal of Health Sciences: April 2018, 10 (2); e67544
  • Published Online: April 28, 2018
  • Article Type: Research Article
  • Received: February 26, 2018
  • Revised: March 27, 2018
  • Accepted: April 21, 2018
  • DOI: 10.5812/jjhs.67544

To Cite: Alizamir M, Sobhanardakani S. An Artificial Neural Network - Particle Swarm Optimization (ANN- PSO) Approach to Predict Heavy Metals Contamination in Groundwater Resources, Jundishapur J Health Sci. 2018 ;10(2):e67544. doi: 10.5812/jjhs.67544.

Abstract
Copyright © 2018, Jundishapur Journal of Health Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited
1. Background
2. Objectives
3. Methods
4. Results
5. Discussion
Acknowledgements
Footnotes
References
  • 1. Moharir A, Ramteke DS, Moghe CA, Wate SR, Sarin R. Surface and groundwater quality assessment in Bina region. Indian J Environ Protect. 2002;22(9):961-9.
  • 2. Rajankar PN, Gulhane SR, Tambekar DH, Ramteke DS, Wate SR. Water Quality Assessment of Groundwater Resources in Nagpur Region (India) Based on WQI. E J Chem. 2009;6(3):905-8. doi: 10.1155/2009/971242.
  • 3. Hernandez F, Beltran J, Sancho JV. Study of multi-residue methods for the determination of selected pesticides in groundwater. Sci Total Environ. 1993;132(2-3):297-312. doi: 10.1016/0048-9697(93)90139-w.
  • 4. Vodela JK, Renden JA, Lenz SD, McElhenney WH, Kemppainen BW. Drinking water contaminants (arsenic, cadmium, lead, benzene, and trichloroethylene). 1. Interaction of contaminants with nutritional status on general performance and immune function in broiler chickens. Poult Sci. 1997;76(11):1474-92. doi: 10.1093/ps/76.11.1474. [PubMed: 9355140].
  • 5. Prasad B, Sangita K. Heavy Metal Pollution Index of Ground Water of an Abandoned Open Cast Mine Filled with Fly Ash: a Case Study. Mine Water Environ. 2008;27(4):265-7. doi: 10.1007/s10230-008-0050-8.
  • 6. Caldas SS, Demoliner A, Costa FP, D'Oca MGM, Primel EG. Pesticide residue determination in groundwater using solid-phase extraction and high-performance liquid chromatography with diode array detector and liquid chromatography-tandem mass spectrometry. J Braz Chem Soc. 2010;21(4):642-50. doi: 10.1590/s0103-50532010000400009.
  • 7. Maria-Alexandra H, Roman C, Ristoiu D, Popita G, Tanaselia C. Assessing of water quality pollution indices for heavy metal contamination. A study case from Medias City groundwaters. Agriculture. 2013;87(3-4):25-31.
  • 8. Sobhanardakani S, Jamali M, Maanijou M. Evaluation of as, Zn, Cr and Mn concentrations in groundwater resources of razan plain and preparation of zoning map using gis. J Environ Sci Technol. 2014;16(2):25-38.
  • 9. Ardakani SS, Razban SS, Maànijou M. Evaluation of concentration of some heavy metals in ground water resources of Qahavand Plain-Hamedan. J Kermanshah Univ Med Sci. 2014;18(6):339-48.
  • 10. Sobhanardakani S, Talebiani S, Maanijou M. Evaluation of As, Zn, Pb and Cu concentrations in groundwater resources of Toyserkan Plain and preparing the zoning map using GIS. J Mazandaran Univ Med Sci. 2014;24(114):120-30.
  • 11. Ardakani SS, Maanijou M, Asadi H. Investigation of Pb, Cd, Cu and Mg concentrations in groundwater resources of Razan Plain. Sci J Hamadan Univ Med Sci. 2015;21(4):319-29.
  • 12. Alizamir M, Sobhanardakani S. A Comparison of Performance of Artificial Neural Networks for Prediction of Heavy Metals Concentration in Groundwater Resources of Toyserkan Plain. Avicenna J Environ Health Engin. 2017;4(1). doi: 10.5812/ajehe.11792.
  • 13. Alizamir M, Sobhanardakani S. Predicting arsenic and heavy metals contamination in groundwater resources of Ghahavand plain based on an artificial neural network optimized by imperialist competitive algorithm. Environ Health Engin Manag. 2017;4(4):225-31. doi: 10.15171/ehem.2017.31.
  • 14. Sobhanardakani S. Evaluation of the water quality pollution indices for groundwater resources of Ghahavand plain, Hamadan province, western Iran. Iran J Toxicol. 2016;10(3):35-40.
  • 15. Alizamir M, Sobhanardakani S, Taghavi L. Modeling of groundwater resources heavy metals concentration using soft computing methods: Application of different types of artificial neural networks. J Chem Health Risks. 2017;7(3).
  • 16. Bhardwaj R, Gupta A, Garg JK. Evaluation of heavy metal contamination using environmetrics and indexing approach for River Yamuna, Delhi stretch, India. Water Sci. 2017;31(1):52-66. doi: 10.1016/j.wsj.2017.02.002.
  • 17. Faustorilla MV, Chen Z, Dharmarajan R, Naidu R. Determination of Total Petroleum Hydrocarbons in Australian Groundwater Through the Improvised Gas Chromatography-Flame Ionization Detection Technique. J Chromatogr Sci. 2017;55(8):775-83. doi: 10.1093/chromsci/bmx038. [PubMed: 28486602].
  • 18. Boateng TK, Opoku F, Acquaah SO, Akoto O. Pollution evaluation, sources and risk assessment of heavy metals in hand-dug wells from Ejisu-Juaben Municipality, Ghana. Environ Systems Res. 2015;4(1). doi: 10.1186/s40068-015-0045-y.
  • 19. Hosseini SV, Sobhanardakani S, Miandare HK, Harsij M, Regenstein JM. Determination of toxic (Pb, Cd) and essential (Zn, Mn) metals in canned tuna fish produced in Iran. J Environ Health Sci Eng. 2015;13:59. doi: 10.1186/s40201-015-0215-x. [PubMed: 26266037].
  • 20. Rezaei Raja O, Sobhanardakani S, Cheraghi M. Health risk assessment of citrus contaminated with heavy metals in Hamedan city, potential risk of Al and Cu. Environ Health Engin Manag. 2016;3(3):131-5. doi: 10.15171/ehem.2016.11.
  • 21. Rattan RK, Datta SP, Chhonkar PK, Suribabu K, Singh AK. Long-term impact of irrigation with sewage effluents on heavy metal content in soils, crops and groundwater—a case study. Agric Ecosystems Environ. 2005;109(3-4):310-22. doi: 10.1016/j.agee.2005.02.025.
  • 22. Sobhanardakani S, Yari AR, Taghavi L, Tayebi L. Water Quality Pollution Indices to Assess the Heavy Metal Contamination, Case Study: Groundwater Resources of Asadabad Plain In. Arch Hygiene Sci Volume. 2016;5(4).
  • 23. Yari AR, Sobhanardakani S. Water Quality Assessment of Groundwater Resources in Qaleeh Shahin Plain Based on Cd and HEI. Int Arch Health Sci. 2016;3(3):101-6. doi: 10.18869/iahs.3.3.101.
  • 24. Anagu I, Ingwersen J, Utermann J, Streck T. Estimation of heavy metal sorption in German soils using artificial neural networks. Geoderma. 2009;152(1-2):104-12. doi: 10.1016/j.geoderma.2009.06.004.
  • 25. Liu M, Liu X, Li M, Fang M, Chi W. Neural-network model for estimating leaf chlorophyll concentration in rice under stress from heavy metals using four spectral indices. Biosystems Engin. 2010;106(3):223-33. doi: 10.1016/j.biosystemseng.2009.12.008.
  • 26. Rooki R, Doulati Ardejani F, Aryafar A, Bani Asadi A. Prediction of heavy metals in acid mine drainage using artificial neural network from the Shur River of the Sarcheshmeh porphyry copper mine, Southeast Iran. Environ Earth Sci. 2011;64(5):1303-16. doi: 10.1007/s12665-011-0948-5.
  • 27. Venkatramanan S, Chung SY, Selvam S, Son JH, Kim YJ. Interrelationship between geochemical elements of sediment and groundwater at Samrak Park Delta of Nakdong River Basin in Korea: multivariate statistical analyses and artificial neural network approaches. Environ Earth Sci. 2017;76(13). doi: 10.1007/s12665-017-6795-2.
  • 28. Shukla S, Kumar U, Prakash A, Jain VK. An artificial neural network (ANN)-based framework for the Cr removal from the spiked water samples by chitosan oligosaccharide-coated iron oxide nanoparticles. Nanotechno Environ Engin. 2017;2(1). doi: 10.1007/s41204-017-0017-8.
  • 29. Edet AE, Offiong OE. Evaluation of water quality pollution indices for heavy metal contamination monitoring. A study case from Akpabuyo-Odukpani area, Lower Cross River Basin (southeastern Nigeria). GeoJournal. 2002;57(4):295-304. doi: 10.1023/B:GEJO.0000007250.92458.de.
  • 30. Adamowski J, Chan HF. A wavelet neural network conjunction model for groundwater level forecasting. J Hydrol. 2011;407(1-4):28-40. doi: 10.1016/j.jhydrol.2011.06.013.
  • 31. Alizamir M, Sobhanardakani S. Forecasting of heavy metals concentration in groundwater resources of Asadabad plain using artificial neural network approach. J Adv Environ Health Res. 2016;4(2):68-77.
  • 32. Daliakopoulos IN, Coulibaly P, Tsanis IK. Groundwater level forecasting using artificial neural networks. J Hydrol. 2005;309(1-4):229-40. doi: 10.1016/j.jhydrol.2004.12.001.
  • 33. Yan G, Sun H, Büyüköztürk O. Impact load identification for composite structures using Bayesian regularization and unscented Kalman filter. Structur Control Health Monitor. 2017;24(5). e1910. doi: 10.1002/stc.1910.
  • 34. Yoon H, Jun SC, Hyun Y, Bae GO, Lee KK. A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer. J Hydrol. 2011;396(1-2):128-38. doi: 10.1016/j.jhydrol.2010.11.002.
  • 35. Kennedy J. Particle swarm optimization. Proceedings of the IEEE International Conference on Neural Networks. 2011.
  • 36. Eberhart RC, Shi Y, Kennedy J. Swarm intelligence (The Morgan Kaufmann series in evolutionary computation). San Francisco; 2001.
  • 37. Kisi O, Alizamir M, Zounemat-Kermani M. Modeling groundwater fluctuations by three different evolutionary neural network techniques using hydroclimatic data. Nat Hazards. 2017;87(1):367-81. doi: 10.1007/s11069-017-2767-9.
  • 38. Chau KW. Application of a PSO-based neural network in analysis of outcomes of construction claims. Automat Construct. 2007;16(5):642-6. doi: 10.1016/j.autcon.2006.11.008.
  • 39. Hudson-Edwards KA, Jamieson HE, Charnock JM, Macklin MG. Arsenic speciation in waters and sediment of ephemeral floodplain pools, Ríos Agrio–Guadiamar, Aznalcóllar, Spain. Chem Geol. 2005;219(1-4):175-92. doi: 10.1016/j.chemgeo.2005.02.001.
  • 40. Singh SK, Ghosh AK, Kumar A, Kislay K, Kumar C, Tiwari RR, et al. Groundwater arsenic contamination and associated health risks in Bihar, India. Int J Environ Res. 2014;8(1):49-60.
  • 41. Buragohain M, Bhuyan B, Sarma HP. Seasonal variations of lead, arsenic, cadmium and aluminium contamination of groundwater in Dhemaji district, Assam, India. Environ Monit Assess. 2010;170(1-4):345-51. doi: 10.1007/s10661-009-1237-6. [PubMed: 19908151].
  • 42. Kargar M, Khorasani N, Karami M, Rafiee G, Naseh R. Statistical source identification of major and trace elements in groundwater downward the tailings dam of Miduk Copper Complex, Kerman, Iran. Environ Monit Assess. 2012;184(10):6173-85. doi: 10.1007/s10661-011-2411-1. [PubMed: 22048922].
  • 43. Ramesh K, Elango L. Groundwater quality and its suitability for domestic and agricultural use in Tondiar river basin, Tamil Nadu, India. Environ Monit Assess. 2012;184(6):3887-99. doi: 10.1007/s10661-011-2231-3. [PubMed: 21850434].
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments