Jundishapur Journal of Health Sciences

Published by: Kowsar

The Efficiency of a Novel Cycling Flow Baffled Reactor Performance for the Removal of Nitrogen and Organic Matter from Wastewater

Leila Abbasi 1 , Abooalfazl Azhdarpoor 2 , * and Mohammad Reza Samaei 3
Authors Information
1 Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
2 Department of Environmental Health Engineering, Shiraz University of Medical Sciences, Shiraz, Iran
3 Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
Article information
  • Jundishapur Journal of Health Sciences: April 2018, 10 (2); e58927
  • Published Online: February 7, 2018
  • Article Type: Research Article
  • Received: August 7, 2017
  • Revised: September 24, 2017
  • Accepted: October 2, 2017
  • DOI: 10.5812/jjhs.58927

To Cite: Abbasi L, Azhdarpoor A, Samaei M R. The Efficiency of a Novel Cycling Flow Baffled Reactor Performance for the Removal of Nitrogen and Organic Matter from Wastewater, Jundishapur J Health Sci. 2018 ; 10(2):e58927. doi: 10.5812/jjhs.58927.

Copyright © 2018, Jundishapur Journal of Health Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited
1. Background
2. Methods
3. Results
4. Discussion
  • 1. Aslan S, Kapdan IK. Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae. Ecol Eng. 2006;28(1):64-70. doi: 10.1016/j.ecoleng.2006.04.003.
  • 2. Rawat I, Ranjith Kumar R, Mutanda T, Bux F. Dual role of microalgae: Phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Appl Energy. 2011;88(10):3411-24. doi: 10.1016/j.apenergy.2010.11.025.
  • 3. Malla FA, Khan SA, Rashmi , Sharma GK, Gupta N, Abraham G. Phycoremediation potential of Chlorella minutissima on primary and tertiary treated wastewater for nutrient removal and biodiesel production. Ecol Eng. 2015;75:343-9. doi: 10.1016/j.ecoleng.2014.11.038.
  • 4. Wang S, Peng Y. Natural zeolites as effective adsorbents in water and wastewater treatment. Chem Eng J. 2010;156(1):11-24. doi: 10.1016/j.cej.2009.10.029.
  • 5. Chowdhury N, Nakhla G, Zhu J. Load maximization of a liquid-solid circulating fluidized bed bioreactor for nitrogen removal from synthetic municipal wastewater. Chemosphere. 2008;71(5):807-15. doi: 10.1016/j.chemosphere.2007.11.070. [PubMed: 18262217].
  • 6. Abdel daiem MM, Rivera-Utrilla J, Ocampo-Perez R, Mendez-Diaz JD, Sanchez-Polo M. Environmental impact of phthalic acid esters and their removal from water and sediments by different technologies--a review. J Environ Manage. 2012;109:164-78. doi: 10.1016/j.jenvman.2012.05.014. [PubMed: 22796723].
  • 7. Renman A, Hylander LD, Renman G. Transformation and removal of nitrogen in reactive bed filter materials designed for on-site wastewater treatment. Ecol Eng. 2008;34(3):207-14. doi: 10.1016/j.ecoleng.2008.08.006.
  • 8. Zhang Y, Angelidaki I. A new method for in situ nitrate removal from groundwater using submerged microbial desalination-denitrification cell (SMDDC). Water Res. 2013;47(5):1827-36. doi: 10.1016/j.watres.2013.01.005. [PubMed: 23375601].
  • 9. Kim YM, Park D, Lee DS, Park JM. Inhibitory effects of toxic compounds on nitrification process for cokes wastewater treatment. J Hazard Mater. 2008;152(3):915-21. doi: 10.1016/j.jhazmat.2007.07.065. [PubMed: 17804160].
  • 10. Sibag M, Kim HS. Nitrification denitrification enhanced biological phosphorous removal (NDEBPR) occurs in a lab-scale alternating hypoxic/oxic membrane bioreactor. Bioresour Technol. 2012;104:173-80. doi: 10.1016/j.biortech.2011.11.001. [PubMed: 22130083].
  • 11. Ruiz G, Jeison D, Chamy R. Nitrification with high nitrite accumulation for the treatment of wastewater with high ammonia concentration. Water Res. 2003;37(6):1371-7. doi: 10.1016/S0043-1354(02)00475-X. [PubMed: 12598199].
  • 12. Hua G, Salo MW, Schmit CG, Hay CH. Nitrate and phosphate removal from agricultural subsurface drainage using laboratory woodchip bioreactors and recycled steel byproduct filters. Water Res. 2016;102:180-9. doi: 10.1016/j.watres.2016.06.022. [PubMed: 27344249].
  • 13. Metcalf E, Eddy M. Wastewater engineering treatment and reuse. McgrawHill; 2003.
  • 14. Monclus H, Puig S, Coma M, Bosch A, Balaguer MD, Colprim J. Nitrogen removal from landfill leachate using the SBR technology. Environ Technol. 2009;30(3):283-90. doi: 10.1080/09593330802622105. [PubMed: 19438061].
  • 15. Dubber D, Gray NF. The effect of anoxia and anaerobia on ciliate community in biological nutrient removal systems using laboratory-scale sequencing batch reactors (SBRs). Water Res. 2011;45(6):2213-26. doi: 10.1016/j.watres.2011.01.015. [PubMed: 21329959].
  • 16. Park W, Nam YK, Lee MJ, Kim TH. Simultaneous nitrification and denitrification in a CEM (cation exchange membrane)-bounded two chamber system. Water Res. 2009;43(15):3820-6. doi: 10.1016/j.watres.2009.05.039. [PubMed: 19564033].
  • 17. Azhdarpoor A, Mohammadi P, Dehghani M. Simultaneous removal of nutrients in a novel anaerobic–anoxic/aerobic sequencing reactor: removal of nutrients in a novel reactor. Int J Environ Sci Technol. 2015;13(2):543-50. doi: 10.1007/s13762-015-0871-5.
  • 18. American Public Health Association , American Water Works Association , Water Environmental Federation . Standard methods for the examination of water and wastewater. 21st ed. Washington DC: American Public Health Association; 2005.
  • 19. Jiang M, Zhang Y, Zhou X, Su Y, Zhang M, Zhang K. Simultaneous carbon and nutrient removal in an airlift loop reactor under a limited filamentous bulking state. Bioresour Technol. 2013;130:406-11. doi: 10.1016/j.biortech.2012.11.129. [PubMed: 23313686].
  • 20. Yang S, Yang F, Fu Z, Wang T, Lei R. Simultaneous nitrogen and phosphorus removal by a novel sequencing batch moving bed membrane bioreactor for wastewater treatment. J Hazard Mater. 2010;175(1-3):551-7. doi: 10.1016/j.jhazmat.2009.10.040. [PubMed: 19896271].
  • 21. Hu Z, Zhang J, Li S, Xie H, Wang J, Zhang T, et al. Effect of aeration rate on the emission of N2O in anoxic-aerobic sequencing batch reactors (A/O SBRs). J Biosci Bioeng. 2010;109(5):487-91. doi: 10.1016/j.jbiosc.2009.11.001. [PubMed: 20347772].
  • 22. Liu Y, Shi H, Xia L, Shi H, Shen T, Wang Z, et al. Study of operational conditions of simultaneous nitrification and denitrification in a Carrousel oxidation ditch for domestic wastewater treatment. Bioresour Technol. 2010;101(3):901-6. doi: 10.1016/j.biortech.2009.09.015. [PubMed: 19818603].
  • 23. Freitas F, Temudo MF, Carvalho G, Oehmen A, Reis MA. Robustness of sludge enriched with short SBR cycles for biological nutrient removal. Bioresour Technol. 2009;100(6):1969-76. doi: 10.1016/j.biortech.2008.10.031. [PubMed: 19056261].
  • 24. Cassidy DP, Belia E. Nitrogen and phosphorus removal from an abattoir wastewater in a SBR with aerobic granular sludge. Water Res. 2005;39(19):4817-23. doi: 10.1016/j.watres.2005.09.025. [PubMed: 16278003].
  • 25. Ding A, Qu F, Liang H, Ma J, Han Z, Yu H, et al. A novel integrated vertical membrane bioreactor (IVMBR) for removal of nitrogen from synthetic wastewater/domestic sewage. Chem Eng J. 2013;223:908-14. doi: 10.1016/j.cej.2013.01.096.

Featured Image:

Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:



Create Citiation Alert
via Google Reader

Readers' Comments