Jundishapur Journal of Health Sciences

Published by: Kowsar

One Step In-Situ Formed Magnetic Chitosan Nanoparticles as an Efficient Sorbent for Removal of Mercury Ions From Petrochemical Waste Water: Batch and Column Study

Nadereh Rahbar 1 , 2 , * , Zahra Ramezani 1 , 2 and Zahra Mashhadizadeh 1
Authors Information
1 Department of Medicinal Chemistry, Nanotechnology Research Center, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, IR Iran
2 Department of Medicinal Chemistry, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, IR Iran
Article information
  • Jundishapur Journal of Health Sciences: October 01, 2015, 7 (4); e30174
  • Published Online: October 20, 2015
  • Article Type: Research Article
  • Received: June 3, 2015
  • Revised: July 1, 2015
  • Accepted: July 4, 2015
  • DOI: 10.17795/jjhs-30174

To Cite: Rahbar N, Ramezani Z, Mashhadizadeh Z. One Step In-Situ Formed Magnetic Chitosan Nanoparticles as an Efficient Sorbent for Removal of Mercury Ions From Petrochemical Waste Water: Batch and Column Study, Jundishapur J Health Sci. 2015 ; 7(4):e30174. doi: 10.17795/jjhs-30174.

Copyright © 2015, Ahvaz Jundishapur University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Materials and Methods
4. Results
5. Discussion
  • 1. Xiong C, Li Y, Wang G, Fang L, Zhou S, Yao C, et al. Selective removal of Hg(II) with polyacrylonitrile-2-amino-1,3,4-thiadiazole chelating resin: Batch and column study. Chemical Engineering Journal. 2015; 259: 257-65[DOI]
  • 2. Niu Y, Qu R, Chen H, Mu L, Liu X, Wang T, et al. Synthesis of silica gel supported salicylaldehyde modified PAMAM dendrimers for the effective removal of Hg(II) from aqueous solution. J Hazard Mater. 2014; 278: 267-78[DOI][PubMed]
  • 3. Raji F, Pakizeh M. Study of Hg(II) species removal from aqueous solution using hybrid ZnCl2-MCM-41 adsorbent. Applied Surface Science. 2013; 282: 415-24[DOI]
  • 4. Karimi A, Moniri F, Nasihatkon A, Zarepoor MJ, Alborzi A. Mercury exposure among residents of a building block in Shiraz, Iran. Environ Res. 2002; 88(1): 41-3[DOI][PubMed]
  • 5. Zolfaghari G, Esmaili-Sari A, Ghasempouri SM, Baydokhti RR, Hassanzade Kiabi B. A multispecies-monitoring study about bioaccumulation of mercury in Iranian birds (Khuzestan to Persian Gulf): Effect of taxonomic affiliation and trophic level. Environ Res. 2009; 109(7): 830-6[DOI][PubMed]
  • 6. Zolfaghari G, Esmaili-Sari A, Ghasempouri SM, Kiabi BH. Examination of mercury concentration in the feathers of 18 species of birds in southwest Iran. Environ Res. 2007; 104(2): 258-65[DOI][PubMed]
  • 7. Zolfaghari G, Esmaili-Sari A, Anbia M, Younesi H, Amirmahmoodi S, Ghafari-Nazari A. Taguchi optimization approach for Pb(II) and Hg(II) removal from aqueous solutions using modified mesoporous carbon. J Hazard Mater. 2011; 192(3): 1046-55[DOI][PubMed]
  • 8. NCAP, National Caspian Action Plan. 2002;
  • 9. Henneberry YK, Kraus TE, Fleck JA, Krabbenhoft DP, Bachand PM, Horwath WR. Removal of inorganic mercury and methylmercury from surface waters following coagulation of dissolved organic matter with metal-based salts. Sci Total Environ. 2011; 409(3): 631-7[DOI][PubMed]
  • 10. Han DS, Orillano M, Khodary A, Duan Y, Batchelor B, Abdel-Wahab A. Reactive iron sulfide (FeS)-supported ultrafiltration for removal of mercury (Hg(II)) from water. Water Res. 2014; 53: 310-21[DOI][PubMed]
  • 11. Da Pieve F, Stankowski M, Hogan C. Electronic structure calculations of mercury mobilization from mineral phases and photocatalytic removal from water and the atmosphere. Sci Total Environ. 2014; 493: 596-605[DOI][PubMed]
  • 12. Oehmen A, Vergel D, Fradinho J, Reis MA, Crespo JG, Velizarov S. Mercury removal from water streams through the ion exchange membrane bioreactor concept. J Hazard Mater. 2014; 264: 65-70[DOI][PubMed]
  • 13. Anbia M, Dehghan R. Functionalized CMK-3 mesoporous carbon with 2-amino-5-mercapto-1,3,4-thiadiazole for Hg(II) removal from aqueous media. J Environ Sci (China). 2014; 26(7): 1541-8[DOI][PubMed]
  • 14. Tran L, Wu P, Zhu Y, Yang L, Zhu N. Highly enhanced adsorption for the removal of Hg(II) from aqueous solution by Mercaptoethylamine/Mercaptopropyltrimethoxysilane functionalized vermiculites. J Colloid Interface Sci. 2015; 445: 348-56[DOI][PubMed]
  • 15. Hadi P, To MH, Hui CW, Lin CS, McKay G. Aqueous mercury adsorption by activated carbons. Water Res. 2015; 73: 37-55[DOI][PubMed]
  • 16. Yu CT, Chen YL, Cheng HW. Development of an Innovative Layered Carbonates Material for Mercury Removal Sorbents. Energy Procedia. 2014; 61: 1270-4[DOI]
  • 17. Ma N, Yang Y, Chen S, Zhang Q. Preparation of amine group-containing chelating fiber for thorough removal of mercury ions. J Hazard Mater. 2009; 171(1-3): 288-93[DOI][PubMed]
  • 18. Kyzas GZ, Travlou NA, Deliyanni EA. The role of chitosan as nanofiller of graphite oxide for the removal of toxic mercury ions. Colloids Surf B Biointerfaces. 2014; 113: 467-76[DOI][PubMed]
  • 19. Mondal DK, Nandi BK, Purkait MK. Removal of mercury (II) from aqueous solution using bamboo leaf powder: Equilibrium, thermodynamic and kinetic studies. Journal of Environmental Chemical Engineering. 2013; 1(4): 891-8[DOI]
  • 20. Hassan SS, Awwad NS, Aboterika AH. Removal of mercury(II) from wastewater using camel bone charcoal. J Hazard Mater. 2008; 154(1-3): 992-7[DOI][PubMed]
  • 21. Rao MM, Reddy DH, Venkateswarlu P, Seshaiah K. Removal of mercury from aqueous solutions using activated carbon prepared from agricultural by-product/waste. J Environ Manage. 2009; 90(1): 634-43[DOI][PubMed]
  • 22. Shan C, Ma Z, Tong M, Ni J. Removal of Hg(II) by poly(1-vinylimidazole)-grafted Fe3O4@SiO2 magnetic nanoparticles. Water Res. 2015; 69: 252-60[DOI][PubMed]
  • 23. Gupta A, Vidyarthi SR, Sankararamakrishnan N. Enhanced sorption of mercury from compact fluorescent bulbs and contaminated water streams using functionalized multiwalled carbon nanotubes. J Hazard Mater. 2014; 274: 132-44[DOI][PubMed]
  • 24. Ling L, Zhao S, Han P, Wang B, Zhang R, Fan M. Toward predicting the mercury removal by chlorine on the ZnO surface. Chemical Engineering Journal. 2014; 244: 364-71[DOI]
  • 25. Wan Ngah WS, Teong LC, Hanafiah MAKM. Adsorption of dyes and heavy metal ions by chitosan composites: A review. Carbohydrate Polymers. 2011; 83(4): 1446-56[DOI]
  • 26. Yuwei C, Jianlong W. Preparation and characterization of magnetic chitosan nanoparticles and its application for Cu(II) removal. Chemical Engineering Journal. 2011; 168(1): 286-92[DOI]
  • 27. Namdeo M, Bajpai SK. Chitosan–magnetite nanocomposites (CMNs) as magnetic carrier particles for removal of Fe(III) from aqueous solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2008; 320(1-3): 161-8[DOI]
  • 28. Fan L, Li M, Lv Z, Sun M, Luo C, Lu F, et al. Fabrication of magnetic chitosan nanoparticles grafted with beta-cyclodextrin as effective adsorbents toward hydroquinol. Colloids Surf B Biointerfaces. 2012; 95: 42-9[DOI][PubMed]
  • 29. Monier M, Abdel-Latif DA. Preparation of cross-linked magnetic chitosan-phenylthiourea resin for adsorption of Hg(II), Cd(II) and Zn(II) ions from aqueous solutions. J Hazard Mater. 2012; 209-210: 240-9[DOI][PubMed]
  • 30. Chang YC, Chang SW, Chen DH. Magnetic chitosan nanoparticles: Studies on chitosan binding and adsorption of Co(II) ions. Reactive and Functional Polymers. 2006; 66(3): 335-41[DOI]
  • 31. Chang YC, Chen DH. Preparation and adsorption properties of monodisperse chitosan-bound Fe3O4 magnetic nanoparticles for removal of Cu(II) ions. J Colloid Interface Sci. 2005; 283(2): 446-51[DOI][PubMed]
  • 32. Elwakeel K. Removal of Cr(VI) from alkaline aqueous solutions using chemically modified magnetic chitosan resins. Desalination. 2010; 250(1): 105-12[DOI]
  • 33. Peng Q, Liu Y, Zeng G, Xu W, Yang C, Zhang J. Biosorption of copper(II) by immobilizing Saccharomyces cerevisiae on the surface of chitosan-coated magnetic nanoparticles from aqueous solution. J Hazard Mater. 2010; 177(1-3): 676-82[DOI][PubMed]
  • 34. Zhou L, Liu Z, Liu J, Huang Q. Adsorption of Hg (II) from aqueous solution by ethylenediamine-modified magnetic crosslinking chitosan microspheres. Desalination. 2010; 258(1-3): 41-7[DOI]
  • 35. Fan L, Luo C, Lv Z, Lu F, Qiu H. Preparation of magnetic modified chitosan and adsorption of Zn(2)(+) from aqueous solutions. Colloids Surf B Biointerfaces. 2011; 88(2): 574-81[DOI][PubMed]
  • 36. Paulino AT, Belfiore LA, Kubota LT, Muniz EC, Almeida VC, Tambourgi EB. Effect of magnetite on the adsorption behavior of Pb(II), Cd(II), and Cu(II) in chitosan-based hydrogels. Desalination. 2011; 275(1-3): 187-96[DOI]
  • 37. Rahbar N, Jahangiri A, Boumi S, Khodayar MJ. Mercury removal from aqueous solutions with chitosan-coated magnetite nanoparticles optimized using the box-behnken design. Jundishapur J Nat Pharm Prod. 2014; 9(2)[PubMed]
  • 38. Jiang H, Chen P, Luo S, Tu X, Cao Q, Shu M. Synthesis of novel nanocomposite Fe3O4/ZrO2/chitosan and its application for removal of nitrate and phosphate. Applied Surface Science. 2013; 284: 942-9[DOI]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:



Create Citiation Alert
via Google Reader

Readers' Comments