Jundishapur Journal of Health Sciences

Published by: Kowsar

An Overview on Production and Applications of Ferrate(VI)

Amirreza Talaiekhozani 1 , * , Marzieh Bagheri 2 , Mohammad Reza Talaei 3 and Nematollah Jaafarzadeh 4
Authors Information
1 Department of Civil Engineering, Jami Institute of Technology, Isfahan, IR Iran
2 Department of Chemical Engineering, Jami Institute of Technology, Isfahan, IR Iran
3 Department of Chemical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, IR Iran
4 Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, IR Iran
Article information
  • Jundishapur Journal of Health Sciences: July 01, 2016, 8 (3); e34904
  • Published Online: March 22, 2016
  • Article Type: Review Article
  • Received: November 20, 2015
  • Revised: January 24, 2016
  • Accepted: February 13, 2016
  • DOI: 10.17795/jjhs-34904

To Cite: Talaiekhozani A, Bagheri M, Talaei M R, Jaafarzadeh N. An Overview on Production and Applications of Ferrate(VI), Jundishapur J Health Sci. 2016 ;8(3):e34904. doi: 10.17795/jjhs-34904.

Abstract
Copyright © 2016, Ahvaz Jundishapur University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Context
2. Evidence Acquisition
3. Results
4. Conclusions
Acknowledgements
References
  • 1. Norcross BE, Lewis WC, Gai H, Noureldin NA, Lee DG. The oxidation of secondary alcohols by potassium tetraoxoferrate(VI). Canad J Chem. 1997; 75(2): 129-39[DOI]
  • 2. Bouzek K, RousA I. J Appl Electrochem. 1997; 27(6): 679-84[DOI]
  • 3. Madarasz J, Zboril R, Homonnay Z, Sharma VK, Pokol G. Thermal decomposition of iron(VI) oxides, K2FeO4 and BaFeO4, in an inert atmosphere. J Solid State Chem. 2006; 179(5): 1426-33[DOI]
  • 4. Sharma VK, Kazama F, Jiangyong H, Ray AK. Ferrates (iron(VI) and iron(V)): environmentally friendly oxidants and disinfectants. J Water Health. 2005; 3(1): 45-58[PubMed]
  • 5. Ibanez JG, Tellez-Giron M, Alvarez D, Garcia-Pintor E. Laboratory Experiments on the Electrochemical Remediation of the Environment. Part 6: Microscale Production of Ferrate. J Chem Educ. 2004; 81(2): 251[DOI]
  • 6. Macova Z, Bouzek K, Sharma VK. Ferrates: Synthesis, properties, and applications in water and wastewater treatment, ACS Symposium Series 985. 2008; : 52-67
  • 7. Sharma VK, Yngard RA, Cabelli DE, Clayton B. J. . Ferrate(VI) and ferrate(V) oxidation of cyanide, thiocyanate, and copper(I) cyanide. Radiat Phys Chem. 2008; 77(6): 761-7[DOI]
  • 8. Licht S, Yu X. Ferrates: Synthesis, Properties, and Applications in Water and Wastewater Treatment, ACS SymposiumSeries. 2008; 985: 2-51[DOI]
  • 9. Tsapin A. Iron(VI): Hypothetical Candidate for the Martian Oxidant. Icarus. 2000; 147(1): 68-78[DOI]
  • 10. Kazama F. Viral inactivation by potassium ferrate. Water Sci Technol. 1995; 31(5-6): 165-8[DOI]
  • 11. Sharma VK, O'Connor DB. Ferrate(V) oxidation of thiourea: a premix pulse radiolysis study. Inorganica Chimica Acta. 2000; 311(1-2): 40-4[DOI]
  • 12. Thompson GW, Ockerman LT, Schreyer JM. Preparation and Purification of Potassium Ferrate. VI. J Am Chem Soc. 1951; 73(3): 1379-81[DOI]
  • 13. Ni X, Ji M, Yang Z, Zheng H. Preparation and structure characterization of nanocrystalline BaFeO4. J Cryst Grow. 2004; 261(1): 82-6[DOI]
  • 14. Hoppe M, Schlemper E, Murmann R. Structure of dipotassium ferrate (VI). Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry. 1982; 38(8): 2237-9
  • 15. Goff H, Murmann RK. Mechanism of isotopic oxygen exchange and reduction of ferrate(VI) ion (FeO42-). J Am Chem Soc. 1971; 93(23): 6058-65[DOI]
  • 16. Lee Y, Cho M, Kim JY, Yoon J. Chemistry of ferrate (Fe (VI)) in aqueous solution and its applications as a green chemical. J Ind Eng Chem. 2004; 10(1): 161-71
  • 17. Rush JD, Zhao Z, Bielski BH. Reaction of ferrate (VI)/ferrate (V) with hydrogen peroxide and superoxide anion--a stopped-flow and premix pulse radiolysis study. Free Radic Res. 1996; 24(3): 187-98[PubMed]
  • 18. Lee DG, Gai H. Kinetics and mechanism of the oxidation of alcohols by ferrate ion. Can J Chem. 1993; 71(9): 1394-400[DOI]
  • 19. Bouzek K, Schmidt MJ, Wragg AA. Influence of electrolyte composition on current yield during ferrate(VI) production by anodic iron dissolution. Electrochemistry Communications. 1999; 1(9): 370-4[DOI]
  • 20. Villanueva-Rodriguez M, Hernandez-Ramirez A, Peralta-Hernandez JM, Bandala ER, Quiroz-Alfaro MA. Enhancing the electrochemical oxidation of acid-yellow 36 azo dye using boron-doped diamond electrodes by addition of ferrous ion. J Hazard Mater. 2009; 167(1-3): 1226-30[DOI][PubMed]
  • 21. Denvir A, Pletcher D. Electrochemical generation of ferrate Part I: Dissolution of an iron wool bed anode. J Appl Electrochem. 1996; 26(8): 815-22[DOI]
  • 22. Lescuras‐Darrou V, Lapicque F, Valentin G. J Appl Electrochem. 2002; 32(1): 57-63[DOI]
  • 23. Denvir A, Pletcher D. Electrochemical generation of ferrate Part II: Dissolution of an iron wool bed anode. J Appl Electrochem. 1996; 26(8): 823-7[DOI]
  • 24. Ninane L, Kanari N, Criado C, Jeannot C, Evrard O, Neveux N. Ferrates: Synthesis, properties and applications in water and wastewater treatment, . Proceedings of the 2nd ACS National Meeting. 2006; : 558
  • 25. Perfiliev YD, Benko EM, Pankratov DA, Sharma VK, Dedushenko SK. Formation of iron(VI) in ozonalysis of iron(III) in alkaline solution. Inorg Chim Acta. 2007; 360(8): 2789-91[DOI]
  • 26. Macova Z, Bouzek K, Hives J, Sharma VK, Terryn RJ, Baum JC. Research progress in the electrochemical synthesis of ferrate(VI). Electrochimica Acta. 2009; 54(10): 2673-83[DOI]
  • 27. Poggendorf JG. Methode zur quantitativen Bestimmung der elektro-motorischen Kraft in konstanter galvanischer Kette. Pogg. Ann. 1841; 54: 161-91
  • 28. Grube G, Gmelin H. Der EinflussÜberlagertenWechselstromes auf die AnodischeFerratbildung. Zeits- chriftfürElektrochemie und AngewandtePhysikalischeChemie. 1920; 26: 153
  • 29. G G. Die Passivitat der MetallebeiAnodischerPolarisation. ZeitschriftfürElektrochemie und Ange- wandtePhysikalischeChemie. 1927; 33: 389
  • 30. Maghraoui AE, Zerouale A, Ijjaali M, Sajieddine M. Synthesis and Characterization of Ferrate(VI) Alkali Metal by Electrochemical Method. Adv Materi Phys Chem. 2013; 3(1): 83-7[DOI]
  • 31. Bouzek K, Rousar I. Current efficiency during anodic dissolution of iron to ferrate(vi) in concentrated alkali hydroxide solutions. Journal of Applied Electrochemistry. 1993; 23(12): 1317-22[DOI]
  • 32. Bouzek K, Rousar I, Taylor MA. Influence of anode material on current yield during ferrate(vi) production by anodic iron dissolution Part I: Current efficiency during anodic dissolution of white cast iron to ferrate(vi) in concentrated alkali hydroxide solutions. J Appl Electrochem. 1996; 26(9): 925-32[DOI]
  • 33. Bouzek K, Roušar I, Taylor MA. Influence of anode material on current yield during ferrate(vi) production by anodic iron dissolution Part II: Current efficiency during anodic dissolution of white cast iron to ferrate(vi) in concentrated alkali hydroxide solutions. J Appl Electrochem. 1996; 26(9): 925-31[DOI]
  • 34. He W, Wang J, Shao H, Zhang J, Cao C. Novel KOH electrolyte for one-step electrochemical synthesis of high purity solid K2FeO4: Comparison with NaOH. Electrochem. 2005; 7(6): 607-11[DOI]
  • 35. Zhihua XU, Jianming W, Haibo S, Jianqing Z. Physical Properties and Electrochemical Performance of Solid K2FeO4 Samples Prepared by Ex-situ and in-situ Electrochemical Methods. Chin J Chem Eng. 2007; 15(1): 39-43[DOI]
  • 36. Wang HL, Liu SQ, Zhang XY. Preparation and application of sustained release microcapsules of potassium ferrate(VI) for dinitro butyl phenol (DNBP) wastewater treatment. J Hazard Mater. 2009; 169(1-3): 448-53[DOI][PubMed]
  • 37. Chengchun J, Chen L, Shichao W. Ferrates: Synthesis, Properties, and Applications in Water and Wastewater Treatment, ACS SymposiumSeries. Oxford University Press 2008; 985: 84-101
  • 38. Paing J, Picot B, Sambuco JP, Rambaud A. Sludge accumulation and methanogenic activity in an anaerobic lagoon. Water Sci Technol. 2000; 42(10-11): 247-55
  • 39. Parande AK, Palanisamy N, Ramsamy PL, Ethirajan S, Rao CRK. Deterioration of reinforced concrete in sewer environments. Proc Inst Civ Eng-Municipal Eng. 2006; 159(1): 11-20[DOI]
  • 40. Hvitved-Jacobsen T, Vollertsen J, Tanaka N. An integrated aerobic/anaerobic approach for prediction of sulfide formation in sewers. Water Sci Technol. 2000; 41(6): 107-15
  • 41. Yang W, Vollertsen J, Hvitved-Jacobsen T. Anoxic sulfide oxidation in wastewater of sewer networks. Water Sci Technol. 2005; 52(3): 191-9[PubMed]
  • 42. Gadekar S, Nemati M, Hill GA. Batch and continuous biooxidation of sulphide by Thiomicrospira sp. CVO: reaction kinetics and stoichiometry. Water Res. 2006; 40(12): 2436-46[DOI][PubMed]
  • 43. Fu X, Shen W. Physical-Chemistry. 1990; 4
  • 44. Yongsiri C, Vollertsen J, Hvitved-Jacobsen T. Influence of Wastewater Constituents on Hydrogen Sulfide Emission in Sewer Networks. J Environ Eng. 2005; 131(12): 1676-83[DOI]
  • 45. Yongsiri C, Vollertsen J, Hvitved-Jacobsen T. Hydrogen sulfide emission in sewer networks: a two-phase modeling approach to the sulfur cycle. Water Sci Technol. 2004; 50(4): 161-8[PubMed]
  • 46. Pomeroy R, Bowlus FD. Progress report on sulfide control research. Sewage Work J. 1946; 18(4): 597-640[PubMed]
  • 47. Jenkins SH. Advances in Water Pollution Research: Proceedings of the Sixth International Conference Held in Jerusalem. 2013; : 281-8
  • 48. Matos J, Aires C. Mathematical modelling of sulphides and hydrogen sulphide gas build-up in the costa do estoril sewerage system. Water Science and Technology. 1995; 31(7): 255-61[DOI]
  • 49. Islander RL, Devinny JS, Mansfeld F, Postyn A, Hong S. Microbial ecology of crown corrosion in sewers. J Environ Eng. 1991; 117: 751-70[DOI]
  • 50. Redner J. EVALUATING COATINGS FOR CONCRETE IN WASTE WATER FACILITIES: AN UPDATE. J Prot Coatings Linings. 1994; 11(12): 50-61
  • 51. US Environmental Protection Agency . Hydrogen sulphide corrosion in wastewater collection and treatment system. 1991;
  • 52. Davis JL, Nica D, Shields K, Roberts DJ. Analysis of concrete from corroded sewer pipe. Int Biodeterior Biodegradation. 1998; 42(1): 75-84[DOI]
  • 53. Vincke E. Biogenic sulfuric acid corrosion of concrete: microbial interaction, simulation and prevention [Dissertation]. 2002;
  • 54. Monteny J, De Belie N, Vincke E, Verstraete W, Taerwe L. Chemical and microbiological tests to simulate sulfuric acid corrosion of polymer-modified concrete. Cement Concr Res. 2001; 31(9): 1359-65[DOI]
  • 55. Yu T, Bishop PL, Galal A, Mark HB. Fabrication and evaluation of a sulfide microelectrode for biofilm studies. 1998; 690: 231-47[DOI]
  • 56. Hvitved-Jacobsen T, Vollertsen J, Matos JS. The sewer as a bioreactor--a dry weather approach. Water Sci Technol. 2002; 45(3): 11-24[PubMed]
  • 57. Ochi T. Controlling sulfide generation in force mains by air injection. Water Sci Technol. 1998; 37(1): 87-95[DOI]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments