Jundishapur Journal of Health Sciences

Published by: Kowsar

Temephos Removal From Water Samples by Silver Modified Zero-Valent Iron Nanoparticles

Roohollah Shiralipour 1 , * , Behrooz Zargar 1 and Hooshang Parham 1
Authors Information
1 Chemistry Department, College of Science, Shahid Chamran University, Ahvaz, IR Iran
Article information
  • Jundishapur Journal of Health Sciences: January 01, 2015, 7 (1); e25043
  • Published Online: January 20, 2015
  • Article Type: Research Article
  • Received: October 31, 2014
  • Revised: December 5, 2014
  • Accepted: December 27, 2014
  • DOI: 10.5812/jjhs.25043

To Cite: Shiralipour R, Zargar B, Parham H. Temephos Removal From Water Samples by Silver Modified Zero-Valent Iron Nanoparticles, Jundishapur J Health Sci. 2015 ; 7(1):e25043. doi: 10.5812/jjhs.25043.

Copyright © 2015, Ahvaz Jundishapur University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Materials and Methods
4. Results
5. Discussion
  • 1. Williams PL, James RC, Roberts SM. Principles of Toxicology: Environmental and Industrial Applications. 2003;
  • 2. Jeyaratnam J, Maroni M. Organophosphorous compounds. Toxicology. 1994; 91(1): 15-27[PubMed]
  • 3. Temephos in Drinking-water: Use for Vector Control in Drinking-water Sources and Containers, Background document for development of WHO Guidelines for Drinking-water Quality. 2009;
  • 4. Lee C, Kim JY, Lee WI, Nelson KL, Yoon J, Sedlak DL. Bactericidal effect of zero-valent iron nanoparticles on Escherichia coli. Environ Sci Technol. 2008; 42(13): 4927-33[PubMed]
  • 5. Diao M, Yao M. Use of zero-valent iron nanoparticles in inactivating microbes. Water Res. 2009; 43(20): 5243-51[DOI][PubMed]
  • 6. Lin YT, Weng CH, Chen FY. Effective removal of AB24 dye by nano/micro-size zero-valent iron. Sep Purif Technol. 2008; 64(1): 26-30
  • 7. Fan J, Guo Y, Wang J, Fan M. Rapid decolorization of azo dye methyl orange in aqueous solution by nanoscale zerovalent iron particles. J Hazard Mater. 2009; 166(2-3): 904-10[DOI][PubMed]
  • 8. Shu HY, Chang MC, Chen CC, Chen PE. Using resin supported nano zero-valent iron particles for decoloration of Acid Blue 113 azo dye solution. J Hazard Mater. 2010; 184(1-3): 499-505[DOI][PubMed]
  • 9. Chatterjee S, Lim SR, Woo SH. Removal of Reactive Black 5 by zero-valent iron modified with various surfactants. Chem Eng J. 2010; 160(1): 27-32
  • 10. Frost RL, Xi Y, He H. Synthesis, characterization of palygorskite supported zero-valent iron and its application for methylene blue adsorption. J Colloid Interface Sci. 2010; 341(1): 153-61[DOI][PubMed]
  • 11. Shahwan T, Abu Sirriah S, Nairat M, Boyacı E, Eroğlu AE, Scott TB, et al. Green synthesis of iron nanoparticles and their application as a Fenton-like catalyst for the degradation of aqueous cationic and anionic dyes. Chem Eng J. 2011; 172(1): 258-66
  • 12. Chen ZX, Jin XY, Chen Z, Megharaj M, Naidu R. Removal of methyl orange from aqueous solution using bentonite-supported nanoscale zero-valent iron. J Colloid Interface Sci. 2011; 363(2): 601-7[DOI][PubMed]
  • 13. Rangsivek R, Jekel MR. Removal of dissolved metals by zero-valent iron (ZVI): kinetics, equilibria, processes and implications for stormwater runoff treatment. Water Res. 2005; 39(17): 4153-63[DOI][PubMed]
  • 14. Uzum C, Shahwan T, Eroglu, A.E. , Lieberwirth, I. , Scott, T. B. , Hallam, K. R. . Application of zero-valent iron nanoparticles for the removal of aqueous Co2+ ions under various experimental conditions. Chem Eng J . 2008; 144(2): 213-20[DOI]
  • 15. Efecan N, Shahwan T, Eroğlu AE, Lieberwirth I. Characterization of the uptake of aqueous Ni2+ ions on nanoparticles of zero-valent iron (nZVI). Desalination. 2009; 249(3): 1048-54
  • 16. Mak MS, Rao P, Lo IM. Effects of hardness and alkalinity on the removal of arsenic(V) from humic acid-deficient and humic acid-rich groundwater by zero-valent iron. Water Res. 2009; 43(17): 4296-304[DOI][PubMed]
  • 17. Liu T, Zhao L, Sun D, Tan X. Entrapment of nanoscale zero-valent iron in chitosan beads for hexavalent chromium removal from wastewater. J Hazard Mater. 2010; 184(1-3): 724-30[DOI][PubMed]
  • 18. Zhang Y, Li Y, Zheng X. Removal of atrazine by nanoscale zero valent iron supported on organobentonite. Sci Total Environ. 2011; 409(3): 625-30[DOI][PubMed]
  • 19. Singhal RK, Gangadhar B, Basu H, Manisha V, Naidu GRK, Reddy AVR. Remediation of Malathion Contaminated Soil Using Zero Valent Iron Nano-Particles. American J Anal Chem. 2012; 3(1): 76-82[DOI]
  • 20. Ponder SM, Darab JG, Mallouk TE. Remediation of Cr(VI) and Pb(II) Aqueous Solutions Using Supported, Nanoscale Zero-valent Iron. Environ Sci Technol. 2000; 34(12): 2564-9[DOI]
  • 21. Feng J, Lim TT. Iron-mediated reduction rates and pathways of halogenated methanes with nanoscale Pd/Fe: analysis of linear free energy relationship. Chemosphere. 2007; 66(9): 1765-74[DOI][PubMed]
  • 22. Geng B, Jin Z, Li T, Qi X. Preparation of chitosan-stabilized Fe(0) nanoparticles for removal of hexavalent chromium in water. Sci Total Environ. 2009; 407(18): 4994-5000[DOI][PubMed]
  • 23. Cho Y, Choi SI. Degradation of PCE, TCE and 1,1,1-TCA by nanosized FePd bimetallic particles under various experimental conditions. Chemosphere. 2010; 81(7): 940-5[DOI][PubMed]
  • 24. Chen H, Luo H, Lan Y, Dong T, Hu B, Wang Y. Removal of tetracycline from aqueous solutions using polyvinylpyrrolidone (PVP-K30) modified nanoscale zero valent iron. J Hazard Mater. 2011; 192(1): 44-53[DOI][PubMed]
  • 25. Yoshizuka K, Lou Z, Inoue K. Silver-complexed chitosan microparticles for pesticide removal. React Funct Polym. 2000; 44(1): 47-54
  • 26. Sumesh E, Bootharaju MS, Pradeep T, Anshup . A practical silver nanoparticle-based adsorbent for the removal of Hg2+ from water. J Hazard Mater. 2011; 189(1-2): 450-7[DOI][PubMed]
  • 27. Shahverdi AR, Fakhimi A, Shahverdi HR, Minaian S. Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine. 2007; 3(2): 168-71[DOI][PubMed]
  • 28. Espinosa-Cristobal LF, Martinez-Castanon GA, Martinez-Martinez RE, Loyola-Rodriguez JP, Patino-Marin N, Reyes-Macias JF, et al. Antibacterial effect of silver nanoparticles against Streptococcus mutans. Mater Lett. 2009; 63(29): 2603-6
  • 29. Wei D, Sun W, Qian W, Ye Y, Ma X. The synthesis of chitosan-based silver nanoparticles and their antibacterial activity. Carbohydr Res. 2009; 344(17): 2375-82[DOI][PubMed]
  • 30. Pallavicini P, Taglietti A, Dacarro G, Diaz-Fernandez YA, Galli M, Grisoli P, et al. Self-assembled monolayers of silver nanoparticles firmly grafted on glass surfaces: low Ag+ release for an efficient antibacterial activity. J Colloid Interface Sci. 2010; 350(1): 110-6[DOI][PubMed]
  • 31. Ravindra S, Murali Mohan Y, Narayana Reddy N, Mohana Raju K. Fabrication of antibacterial cotton fibres loaded with silver nanoparticles via “Green Approach”. Colloids Surf A Physicochem Eng Asp. 2010; 367(1–3): 31-40
  • 32. Zhao L, Wang H, Huo K, Cui L, Zhang W, Ni H, et al. Antibacterial nano-structured titania coating incorporated with silver nanoparticles. Biomaterials. 2011; 32(24): 5706-16[DOI][PubMed]
  • 33. Quang DV, Sarawade PB, Hilonga A, Kim JK, Chai YG, Kim SH, et al. Preparation of amino functionalized silica micro beads by dry method for supporting silver nanoparticles with antibacterial properties. Colloids Surf A Physicochem Eng Asp. 2011; 389(1–3): 118-26
  • 34. Hebeish A, El-Naggar ME, Fouda MMG, Ramadan MA, Al-Deyab SS, El-Rafie MH. Highly effective antibacterial textiles containing green synthesized silver nanoparticles. Carbohydr Polym. 2011; 86(2): 936-40
  • 35. Guzman M, Dille J, Godet S. Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gram-negative bacteria. Nanomedicine. 2012; 8(1): 37-45[DOI][PubMed]
  • 36. Xue CH, Chen J, Yin W, Jia ST, Ma JZ. Superhydrophobic conductive textiles with antibacterial property by coating fibers with silver nanoparticles. Appl Surf Sci. 2012; 258(7): 2468-72
  • 37. Ladhe AR, Frailie P, Hua D, Darsillo M, Bhattacharyya D. Thiol Functionalized Silica-Mixed Matrix Membranes for Silver Capture from Aqueous Solutions: Experimental Results and Modeling. J Memb Sci. 2009; 326(2): 460-71[DOI][PubMed]
  • 38. Tripathy SK, Yu YT. Spectroscopic investigation of S-Ag interaction in omega-mercaptoundecanoic acid capped silver nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc. 2009; 72(4): 841-4[PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:



Create Citiation Alert
via Google Reader

Readers' Comments