Jundishapur Journal of Health Sciences

Published by: Kowsar

Effect of Methylphenidate on Retention and Retrieval of Passive Avoidance Memory in Young and Aged Mice

Ardeshir Arzi 1 , 2 , Ali Asghar Hemmati 1 , 2 , Neda Sistani Karampour 2 , * and Zahra Nazari Khorasgani 2
Authors Information
1 Physiology Research Center, Department of Pharmacology and Toxicology, School of Pharmacy, Jundishapur University of Medical Sciences, Ahvaz, IR Iran
2 Department of Pharmacology and Toxicology, School of Pharmacy, Jundishapur University of Medical Sciences, Ahvaz, IR Iran
Article information
  • Jundishapur Journal of Health Sciences: October 2014, 6 (4); e23465
  • Published Online: October 20, 2014
  • Article Type: Research Article
  • Received: June 2, 2014
  • Revised: July 7, 2014
  • Accepted: July 12, 2014
  • DOI: 10.5812/jjhs.23465

To Cite: Arzi A, Hemmati A A, Sistani Karampour N, Nazari Khorasgani Z. Effect of Methylphenidate on Retention and Retrieval of Passive Avoidance Memory in Young and Aged Mice, Jundishapur J Health Sci. 2014 ;6(4):e23465. doi: 10.5812/jjhs.23465.

Abstract
Copyright: Copyright © 0, Jundishapur Journal of Health Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Materials and Methods
4. Results
5. Discussion
Acknowledgements
References
  • 1. Alikatte KL, Akondi BR, Yerragunta VG, Veerareddy PR, Palle S. Antiamnesic activity of Syzygium cumini against scopolamine induced spatial memory impairments in rats. Brain Dev. 2012; 34(10): 844-51[DOI][PubMed]
  • 2. Essman WB. Age dependent effects of 5-hydroxytryptamine upon memory consolidation and cerebral protein synthesis. Pharmacol Biochem Behav. 1973; 1(1): 7-14[PubMed]
  • 3. Jaffard R, Destrade C, Durkin T, Ebel A. Memory formation as related to genotypic or experimental variations of hippocampal cholinergic activity in mice. Physiol Behav. 1979; 22(6): 1093-6[PubMed]
  • 4. Grecksch G, Matties H. The role of dopaminergic mechanisms in the rat hippocampus for the consolidation in a brightness discrimination. Psychopharmacology (Berl). 1981; 75(2): 165-8[PubMed]
  • 5. Seeman P, Madras BK. Anti-hyperactivity medication: methylphenidate and amphetamine. Mol Psychiatry. 1998; 3(5): 386-96[PubMed]
  • 6. Scheel KJ, Braestrup C, Nielson M, Golembiowska K, Mogilnicka E. Cocaine: Discussion on the Role of Dopamine in the Biochemical Mechanism of Action. 1977; 21: 373-407[DOI]
  • 7. Leonard BE, McCartan D, White J, King DJ. Methylphenidate: a review of its neuropharmacological, neuropsychological and adverse clinical effects. Hum Psychopharmacol. 2004; 19(3): 151-80[DOI][PubMed]
  • 8. Volkow ND, Wang G, Fowler JS, Logan J, Gerasimov M, Maynard L, et al. Therapeutic doses of oral methylphenidate significantly increase extracellular dopamine in the human brain. J Neurosci. 2001; 21(2)[PubMed]
  • 9. Mehta MA, Owen AM, Sahakian BJ, Mavaddat N, Pickard JD, Robbins TW. Methylphenidate enhances working memory by modulating discrete frontal and parietal lobe regions in the human brain. J Neurosci. 2000; 20(6)[PubMed]
  • 10. Elliott R, Sahakian BJ, Matthews K, Bannerjea A, Rimmer J, Robbins TW. Effects of methylphenidate on spatial working memory and planning in healthy young adults. Psychopharmacology (Berl). 1997; 131(2): 196-206[PubMed]
  • 11. Schermer M, Bolt I, de Jongh R, Olivier B. The Future of Psychopharmacological Enhancements: Expectations and Policies. Neuroethics. 2009; 2(2): 75-87[DOI]
  • 12. Turner DC, Robbins TW, Clark L, Aron AR, Dowson J, Sahakian BJ. Relative lack of cognitive effects of methylphenidate in elderly male volunteers. Psychopharmacology (Berl). 2003; 168(4): 455-64[DOI][PubMed]
  • 13. Saha N, Datta H, Sharma PL. Effects of morphine on memory: interactions with naloxone, propranolol and haloperidol. Pharmacology. 1991; 42(1): 10-4[PubMed]
  • 14. Itoh J, Nabeshima T, Kameyama T. Utility of an elevated plus-maze for the evaluation of memory in mice: effects of nootropics, scopolamine and electroconvulsive shock. Psychopharmacology (Berl). 1990; 101(1): 27-33[PubMed]
  • 15. Sudha S, Lakshmana MK, Pradhan N. Chronic phenytoin induced impairment of learning and memory with associated changes in brain acetylcholine esterase activity and monoamine levels. Pharmacol Biochem Behav. 1995; 52(1): 119-24[PubMed]
  • 16. Avery R. The Alpha-2A-Adrenoceptor Agonist, Guanfacine, Increases Regional Cerebral Blood Flow in Dorsolateral Prefrontal Cortex of Monkeys Performing a Spatial Working Memory Task. Neuropsychopharmacology. 2000; 23(3): 240-9[DOI]
  • 17. Yonkov DI. Possible role of brain dopaminergic systems in the memory effects of central stimulants. Methods Find Exp Clin Pharmacol. 1984; 6(5): 235-9[PubMed]
  • 18. Lazarova-Bakarova MB, Petkova BP, Todorov IK, Petkov VD. Memory impairment induced by combined disturbance of noradrenergic and dopaminergic neurotransmissions: effects of nootropic drugs. Acta Physiol Pharmacol Bulg. 1991; 17(1): 29-34[PubMed]
  • 19. Arzi A, Rahmat H. The effect of Phenytoin on retention and retrieval of memory in mice. J Babol Univ Med Sci. 2005; 7(3): 34-9
  • 20. Zarrindast MR, Sadegh M, Shafaghi B. Effects of nicotine on memory retrieval in mice. Eur J Pharmacol. 1996; 295(1): 1-6[PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader